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MULTI-SAMPLE CLUSTER ANALYSIS AS AN ALTERNATIVE
TO MULTIPLE COMPARISON PROCEDURES

HAMPARSUM BOZDOGAN
Department of Mathematics
University of Virginia
Charlottesville, Virginia

ABSTRACT

This paper studies mult'i-sample cluster analysis, the problem of grouping
samples, as an alternative to muitiple comparison procedures through the deveiopment and
the introduction of model-selection criteria such as those: Akaike's
Information Criterion (AIC) and Schwarz's Criterion (SC), as new procedures
for comparing means, groups, or samples, and so forth, in identifying and selecting
the homogeneous groups or samples from the heterogeneous ones in muiti-sample data
analysis problems.

An enumerative clustering technique is presented to generate all possible choices of
clustering alternatives of groups, or samples on the computer using efficient combinatorial
algorithms without forcing an arbitrary choice among the clustering alternatives, and to find
all sufficiently simple groups or samples consistent with the data and identify the best
clustering among the alternative clusterings.

Numerical examples are carried out and presented on a real data set on grouping the
sampies into fewer than K groups. Through a Monte Carlo study, an application of
multi-sample cluster analysis is shown in designing optimal decision tree ciassifiers in
reducing the dimensionality of remotely sensed heterogeneous data sets to achieve a
parsimonious grouping of samples.

The results obtained demonstrate the utility and versatality of model-seiection criteria
which avoid the notorious choice of levels of significance and which are free from the
ambiguities inherent in the application of conventional hypothesis testing procedures.

KEY WORDS AND PHRASES: Multi-Sample Clusler Analysis; Multiple Comparison
Procedures: Model Selection Criteria; Akaike's Information

Criterion (AIC); Schwarz's Criterion (SC).
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1. INTRODUCTION

Many practical situations require the presentation of multivariate data from several
structured samples for comparative inference and the grouping of the heterogeneous sampies
into homogeneous sets of sampies.

For example, in analysis of variance, to describe any variations of the treatment
means, we partition the treatment means into groups with hopefully the same mean for all
treatments in the same group to find a more parsimonious grouping of treatments (Cox and
Spistvoll 1982).

In remote sensing technology, see, e.g., Argentiero et al. (1982), we classify or group
different samples of large dimensional remotely sensed heterogeneous data sets into
homogeneous sets of samples to reduce the dimensionality of these data sets and to design
optimal decision tree classifiers. Decision tree classifiers are popular and useful to study
the underlying data structure which have the property that sampies are subjecied to a
sequence of decision rules before they are assigned to a unique class to identify and
determine the number of types that the classes originally might have been consisted. Such
an approach, providing that it is well designed, will give us a classification scheme which is
accurate, flexible, and computationaily efficient.

The purpose of this paper is, therefore, to propose and to study Multi-Sample Cluster
Analysis (MSCA), the problem of grouping sampies, developed by this author (see, e.g.,
Bozdogan 1981, Bozdogan and Sciove 1984), as an alternative to Muitipie Comparison
Procedures (MCP's) through the development and introduction of model-selection criteria
such as those of Akaike (1973, 1974), Akaike (1978), and Schwarz (1978), as new procedures
for the comparisons and identification of various collections of groups, sampies, treatments,
experimental conditions, or diagnostic ciassifications, and so forth, in multi-sample data
analysis problems.

In the statistical literature, the Analysis of Variance (ANOVA) is a wideiy used model
for comparing two or more univariate samples, where the familiar Student's t and F
statistics are used for formal comparisons among two or more sampies. In the muiti-sampie
case the Multivariate Analysis of Variance (MANOVA) is a widely used model for comparing
two or more muitivariate sampies. In the MANOVA model, the likelihood ratio principle
leads to Wilks' (1932) lambda, or in short Wilks' A criterion as the test statistic. It piays
the same role in the muitivariate analysis that F-ratio statistic piays in the univariate case.

Often, however, the formal analyses involved in ANOVA or in MANOVA are not
revealing or informative. For this reason, in any problem where a set of parameters is to
be partitioned into groups, it is reasonable to provide a practically useful statistical
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procedure or procedures that would use some sort of statistical model to aid in comparisons
of various collections of comparable groups, samples, etc., and identify the homogeneous
groups from the heterogeneous ones, or vice versa, and tell us which groups (or samples)
should be clustered together and which groups (or samples) should not be clustered
together.

The object of this paper is to point out an enumerative clustering technique to
generate all possible choices of clustering alternatives of groups or samples on the
computer using efficient combinatorial algorithms without forcing an arbitrary choice among
the clustering alternatives.

Thus the central idea is that through Multi-Sample Cluster Analysis (MSCA) as an
alternative to Muitiple Comparison Procedures (MCP's) and through the use of
model-selection criteria we shall find all sufficiently simple partitions of groups or samples
consistent with the data and identify the best clustering among the aiternative ciusterings.
We achieve this by utilizing a new information-theoretic approach to the multi-sample
conventional tests of homogeneity models discussed in Bozdogan (1984). This approach
unifies the conventional test procedures without the worry of what level of significance a
one needs to use. In a conventional pre-test situation, it has become customary to fix the
level of significance a priori at, for example, 1%, 5%, or 10% levels regardless of the
number of parameters estimated within a model. This is essentially arbitrary and no
rational basis exists for making such an arbitrary choice. Model-selection criteria adapt
themselves to the number of parameters estimated within a2 model to achieve parameter
parsimony, and the significance level is adjusted accordingly from onc model to the next.

In Section 2, we shall briefly discuss the Multiple Comparison Procedures (MCP's) and
present their formulation in the muitivariate case. Then we shall outline the existing
problems inherent with the MCP's. In Section 3, we shall propose Muiti-Sample Cluster
Analysis (MSCA) as an alternative to conventional Muitiple Comparison Procedures (MCP's).
We shall define the general MSCA probiem, and discuss how to obtain the total number of
clustering alternatives for a given K, the number of groups or samples in detail for both
MCP's and MSCA. In the subsequent section, that is, in Section 4, we shall briefly give
the formal definitions of model-selection criteria and present the three most commonly used j

multivariate multi-sample models, that is, multi-sample hypotheses, and give their

. model-selection-replacements. For more on this, we refer the reader to Bozdogan (1984). ‘1
v In Section 5, we shall give numerical examples on a real data set, and show an application q
E- of MSCA in designing optimal decision tree classifiers. :

Finally, in Section 6, we shall present our conclusions, and give a listing of the
combinatorial subroutines in the Appendix.

T T T T,TY_ R} T v v v




2. MULTIPLE COMPARISON PROCEDURES (MCP's)

In the univariate analysis of variance (ANOVA) model for testing the equality of K
population means, as we mentioned in the introduction of this paper, the test statistic
F = S%/Ss is used for comparing several popuiation means. If we compute the value
of F for the sampie data, and if it is larger than the critical vaiue of F obtained from

standard F-tables at some prescribed a level, then we reject the overall, "omnibus”, null

hypothesis

Ho Doy = My = . = g 2.1)

in favor of the alternative hypothesis given by
H1 : the K population means are not all equal.

While rejecting the null hypothesis gives us some information about the population
means, namely the heterogeneity of the means, we do not know which means differ frem
each other. Hence, both ANOVA or MANOVA do not pinpoint exactly where the significant
differences lie, and an F test alone, generally falls short of satisfying all of the practical
requirements involved (Duncan 1955). For example, if K =3 and H My{=HoZig I8
rejected, then we do not know whether the main differences are between u; and u,, or
between uq and ug, and so on. Therefore, we are faced with many new problems, and
we may ask the following simple and yet important questions: Does uy differ from
uy ? , Does uq differ from pg ? , Which of the samples are considered coming from
common populations, which are not ?

As in the univariate ANOVA modei, the same problems arise in the multivariate
analysis of variance (MANOVA) model also. That is, rejection of the null hypothesis does
not indicate which groups, sampies, or treatments, or any combinations of them are
different and which should be considered as coming from common populations, which are
not.

Therefore, it is important to obtain some idea where the differences in the means or
mean vectors are when we reject the null hypothesis and establish some reiationships among

the unequal means or mean vectors.
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2.1 Formulation of MCP’s

In the univariate case, i.e., in the case of one response variable, there exists a

muititude of Muitiple Comparison Procedures (MCP's) available in the literature. However,

in the multivariate case, even only two variables, there seems to be a few applicable
techniques have been developed for MCP's in practice. The problem of comparing the means

o’ two Multivariate Normal (MVN) populations, assuming a common covariance matrix I,

cen easily be extended to the case of comparing K normal popuiations when there are n

g
independent p-dimensional observations from the gth population.

Following Seber (1984, p.433), we now recapitulate the formuiation of MCP's in the
multivariate case.

Let Ygi be the ith sampie observation (i=1,2....,ng) from the ith MVN distribution

Np(ug._z_) (g=1,2,...K) so that we have the following MANOVA model for comparing g
population mean vectors.

Yei = Y5 * Eai g =12..K 1= 1,2,...,ng) 2.2)

where the € are iid. Np(g.Z). Then

n =
[ y e’ T
~11 ~11
y' ¢!
~12 ~12
. = - —
. 1 0 0 e ]
. it ! )
1] - 0 1 o u' - e 1]
Il'\l n, 2 1“1
. . .
S —— . . L] : .
y' 0 0 1 u' ¢’
'dkl ~ ~ N“ NK NKl
L KL
' '
YK2 €x2
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or

x=§§+§, (2.3)

The hypothesis of equal population means, H : Uy =ty = . U . can be written
in the form

- T
10 ... 0 -1 un'
~1
01 ... 0 -1 u
#42
§§ = : . : : = 9_ (2.4)
00 ... 0 -1 o'
~K

When the hypothesis of equal population means, H, . is rejected, those means, or linear
combinations of them, that led to the rejection of the hypothesis are of interest. We,
therefore, use Roy's (1957) maximum root test to construct simuitaneous intervals for the
mean differences since it has the advantage of being linked directly to a set of
simultaneous confidence intervals, although it is not as powerful as the likeiihood ratio
test.

For a generai linear model we have

l-a = Pr| ¢

maxs ¢d]

= Pr[ a'CBb € a'CBb + (#_ a'C(X'X)" ! c'a-b'wb)i/2

for ail a, b} . (2.5)

Thus a set of multiple confidence intervals for all linear combinations is given by

a'cBb + (o, clx'x) lcabwnl/?, (2.6)
and the set has an overall confidence of 100(1-a)%, and where E = ()_<'1'_()'1 X'y,
and W is the "within-groups” or "within-samples” SSP matrix. Applying this to our one

way modei in (2.4), we have

w
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CB = : (2.7)
(Hgoy = )
so that
ACB = ay Uy -yl *+ 2y Wy —ug) et ag g g -k )
k
821 ghs
K~1 K
where ¢, = a  (g=1.2,...K-1), cg = - ggl a, and 8§1 cg= 0.  We therefore

find that the class of all contrasts of the U Furthermore, since in the one-way

classification model 23- is the least squares estimate of Ug

E -
= [+
g=1 8 Z8° .

to)

a'c

and, when p = 1

2
[o]
Sc u'bETc, y., b+ (s [z-&]b'wb;l/z (2.8)
g 8~8 ~ = g8 is & @ lgng J v~

simultaneously for all contrasts and all b.

In generai, we would be interested in pairwise contrasts ", - pg and the

corresponding subset of (2.8), namely,

N
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If the maximum root test of H: CB = 0 is significant, then at least one of the
intervals given by (2.8) does not contain zero and we can use the simultaneous intervais to
look at any contrast suggested by the data.

Krishnaiah (1965, 1969, 1979), based on a multivariate analogue of Tukey's Studentized
range, proposed a set of simuitaneous intervails for ail linear combinations

“;.‘r - '&)E . Writing HO: 51 = 52 == 1~1K as

H,= nn H,

r s
r<s
where Hooij -y =0, we can test each of the I = [§] = KK-1/2

r “s

hypotheses Hors using a Hotelling's 'I‘z statistic, T‘Z‘, say, based on a pooled estimate

Sy = W/v of Z, where v = X (ng -1 =n-K We can test H, using
g

2 2
T = max T, .
max 1<k<T k

_ a max caIHOI =1-gq, then Pr{ Ti < q,
3 k =12, IIH)] =1 - a, and the probability is 1-a that

If c satisfies Pr{ T2

~ - an r~OAAS

(4t -u )b € (; - ; Yb + {c (—1. + nL)vab)l/Z B
~p ~g ~ Sre g e c s

simultaneously for all r, s (r#s) and for all P These intervals are the same as (2.9),
a Since the intervals of (2.9) are a subset of (2.8), the )

overail probability exceeds 1-a and $qg> ¢

except that ¢a is replaced by c¢
a/v Unfortunately, extensive tables of c, are
not available.

If we are interested in just a certain number, say, m, of the eiements of B, we can

te SV b

. use the Bonferroni method of constructing m conservative confidence intervais with an
overall confidence of at least 100(1-a)%, and a t-value tg/ 2m

For more details on MCP's, we refer the reader to Duncan (1955), Gabriel (1964,
y. 1968), Miller (1966, 1981), O'Neill and Wetherill (1971), Thomas (1973), Spigtvoil (1974),

Seber (1984), and many other authors since the literature is quite rich in this area.
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2.2 Problems With MCP's

While many MCP's have been proposed in many different papers in the univariate
case, including the ones referred to as above, unfortunately, there are still some serious
drawbacks of these procedures, and there are a few MCP's available in practice in the
multivariate case which are operational.

The major problems with MCP's in general can briefly be summarized as follows.

(i) MCP's either reject or accept the hypothesis of homogeneity, that is, equality of
means, or equivalently, an MCP declares each set of means as heterogeneous (rejected) or
homogeneous (accepted). MCP decision rule is not transitive; i.e., model M; may be
preferred to M,. M, to Mg, and Mj to M, etc.

(i) The decision to accept or reject a model depends on a given significance level a
to maximize the power of the test. In an MCP, it is not ciear how the level of the test
should be defined, and it is not clear how to control the overall error rate. Also, it is not
ciear what should be optimized.

(iii)  Running all [12(] = K(K-1)/2 pairwise MCP's increases the number of nuil
hypothesis to be tested, and more likely we would reject one of them if all the null
hypothesis are actually true, and thus increasing the probability of incorrectly rejecting at
ieast one H,.

{iv) Existing MCP's in general are ail devised to handle pairwise comparisons. They
need to be extended to handle ail [:f] k-subsets of a K-set hypothesis.

(v) In MCP's, arbitrary assumptions are made on the parameters of the models. For
example, in the formulation of MCP’'s in Section 2.1, for the MANOVA model we assumed a
common dispersion matrix X. For unequal Zg , i.e., for covariance heterogeneity, Olson
(1974) from a large scale simuiation study, reported a high inflation in Type I error and
excessive rejections of H, on the basis of Roy's maximum root test, ¢#___. 1In this

max
respect the other two statistics Wilks' A and Hotelling's T2 behave like @

Therefore, it might be expected that in the presence of covarianci heterogeneity, M!(l;la’}"s
might also give erroneous resuits.

(vi) In the multivariate literature there does not exist any simple MCP to handie the
case wnere both mean vectors and the covariance matrices in a modei might vary and we
still want to carry out comparative simuitaneous inference. The same holds in the case of
complete homogeneity, that is, when data are assumed to have come from identical
populations and we still want to carry out comparative simuitaneous inference.

Clearly, there are many problems connected with the existing MCP's. Therefore, for
this reason, in the next section, we shall introduce and utilize a general methodology cailed
Muiti-Sample Cluster Analysis (MSCA) as an alternative to Muiltiple Comparison Procedures

(MCP's). MSCA depends on fast and efficient combinatorial aigorithms. The analysis is
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done under the best fitting model, and therefore, no arbitrary assumptions are made on the

parameters of the model. The only assumption made is the multivariate normality on the

data, which can be tested by using the multivariate measures of skewness and kurtosis
(Mardia et al. 1979).
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3. MULTI-SAMPLE CLLUSTER ANALYSIS AS AN ALTERNATIVE TO MULTIPLE
COMPARISON PROCEDURES

The problem of MCP's can be viewed as one of clustering of means, groups, samples,
or treatments. The possibility of using cluster analysis in place of an MCP appcars to be
originally suggested by Plackett in his discussion of the review paper by O'Neill and
Wetherill (1971).

In the literature, Scott and Knott (1974) used a cluster analysis approach for grouping
means; Cox and Spj#tvoll (1982) used simple partitioning of means into groups based on the
standard F statistic, to mention a few. Their procedures in the spirit are similar to ours,
but in general our method is completely different and new. Therefore, here we shall
propose MSCA or what Gower (1981) calls it, "K-Group Classification” or equivalently what
we also call "K-Sample Cluster Analysis” as an alternative to MCP's.

Next, we discuss the general MSCA probiem.

3.1 The Multi-Sample Cluster (MSC) Probiem

The problem of Muiti-Sample Cluster Analysis (MSCA) arises when we are given a
collection of groups, profiles, samples, treatments, etc., whether these are formed naturally
or experimentally, and our goal is to cluster these into homogeneous groups. Thus the
problem here is to cluster "groups” or "samples” rather than "individuals" or "objects” as in
the single-sample case.

Suppose each individual, object, or case, has been measured on p response or outcome
measures (dependent variables) simultaneously in K independent groups or samples (factor
leveis). Let

r X, (n,xp)
X, (nyxp)
X{nxp) = . . (3.1)
Xk {ngexp)
L -

be a single data matrix of K groups or samples, where )_((ngxp) represents the

K
observations from the gth group or sample, g=1,2,....K, and n = 21 D The goal of
8-
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cluster analysis is to put the K groups or samples into k homogeneous groups, samples, or
classes where k is unknown and varying, but k € K.

Thus we obtain a smallest number k such that the data are consisient with K groups,
and from a robustness viewpoint of test statistics, K should generally be as smali as
possible. Surprisingly, robustness properties do not aiways improve with increasing group
size: small groups are preferred to achieve a parsimonious grouping of samples, and in
general to reduce the dimensionality of muiti-sample data sets.

We generate all possible clustering alternatives of groups or samples on the computer
using efficient combinatorial algorithms and we assemble information from all the different
groupings of size K without forcing an arbitrary choice among the clustering alternatives.

We next discuss how to obtain the total number of clustering aiternatives for a given
K, the number of groups or samples.

3.2 Determining the Number of Clustering Alternatives

Let K be the number of samples, and let k be the number of clusters of samples. If
we use MCP's, and if all pairwise comparisons among the K groups were desired, then this
would require in general KCZ = ['2(] = K(K-1)/2 tests. On the other hand, if we consider
the combinations of K groups or samples taken k at a time, where k < K, then there are
[t] k-subsets of a K-set altogether. In Appendix A.1, we give a simple aigorithm called
MCP which constructs all the possible alternatives sequentially in "lexicographic”, i.e., in
"alphabetical order”. A listing of the output from the subroutine of MCP is shown in Table
3.1.

We note that the existing conventional MCP's are not devised to handle the case of
[t].i.e., k-subsets of a K~set hypotheses or tests for k > 2. They ail need to be modified
accordingly.

If we use the complete enumeration technique, then the number of clustering of K
groups or samples into k nonempty clusters of samples is given by the following theorem.
Theorem 3.2.1. The number of ways of clustering K samples or groups into k-sample
clusters where k € K such that none of the k-sampie clusters is empty is given by

k k 4 K
2, () cofea®. 3.2)

when the order of samples {or groups) within each cluster is irrelevant.
Proof Duran and Odell (1974, p.26).

In this theorem the k-sampie clusters are assumed to be distinct. However, in
clustering or partitioning K sampies into k subsets, none of which is empty, the order of
k-sample clusters or k-subsets is irrelevant. Consequently, from this fact and Theorem

i1
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3.2.1, it follows that the total number of ways of clustering K samples into k-sample
clusters (or subsets) is given by

w = S(K.k) = k—lr 3‘2::0 -1 8 [‘g‘] k-g) K (3.3)
which is known as the Stirling Number of the Second Kind, which gives us the number of
clustering alternatives.

If k, the number of clusters of samples is known in advance, then the total number
of clustering alternatives is given by S(K,k). However, if k is not specified a priori and is
unknown, but k < K, then the total number of clustering alternatives is given by

K
Z Sk . (3.4)
k=l
S(K,k) can be written in terms of the recursive formuia
S(K,k) = kS(K-1,k) + S(K-1,k-1) with S(1,1)= 1 (3.5)
and S(1,k) = 0 for k # 1, and S(K,2) = 2K-1_ 1,

For detailed explanations and proofs, see, e.g., Duran and Odell (1974), and Spath
{1980). Table 3.2 gives S(K,k) for values of K and k up to 10 which is generated from the
subroutine STIRN2 in Appendix A.2. This subroutine constructs a table of total number of
clustering alternatives for various vaiues of K, number of samples, and k varying number of
clusters of samples.

Consider, for example, K = 4 samples. We now wish to cluster K 4 groups or

3 groups or

samples first into k = 1 group or sample, k = 2 groups or samples, k
samples, and k = 4 groups or samples in a hierarchical fashion. In order to be able to
generate all possible clustering alternatives, we utilize Tabie 3.2, We have the total
number of ways of clustering K = 4 groups or sampies into k = 1 homogeneous group or
sample is 1. The total number of ways of clustering K = 4 groups or samples into k = 2
homogeneous groups or samples is 7. The total number of ways of ciustering K = 4 groups
or samples into k = 3 homogeneous groups or samples is 6, and finally, the total number of

ways of clustering K = 4 groups or samples into k = 4 homogeneous groups or samples is

radd
a
.
L

1. Thus adding up these results, we obtain, in total 15 clustering alternatives as the total
for K = 4 groups or samples into k = 1,2,3, and 4 homogeneous groups. We note that 15
is nothing but the sum of the values of row 4 in Table 3.2,

L e R g ane e e )
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r! ) In general, clustering alternatives can be classified according to their representation
forms to make it easy to list all possible clustering alternatives. The subroutine REPFM in
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Appendix A.3 gives the partition of K (number of sampies) which is a positive integer, into
a specified k number of parts. For example, the representation forms of K = 4 groups or
samples into k = 1,2,3, and 4 groups or samples are:
4 = {4)

= {3) + (1)

= {2) + {2)

={2) + (1) + {1)

={1) + {1} + {1} + (1),
where each of the components in a representation {g} denotes the number g, of groups or
samples in the corresponding ciuster. The components of a representation form will always

be written in a hierarchical order to depict the patterns of clustering aiternatives. In our
example there are 15 clustering alternatives but only 5 representation forms. In general {
the number of representation forms is much smailer than the number of clustering i
alternatives. ‘

To generate and list the clustering alternatives corresponding to their representation 1
forms, we use the subroutine ALLSUB given in Appendix A.4. This subroutine generates
and lists all the simple patterns of clustering alternatives for a specified number of samples
K for Multi-Sample Cluster Analysis (MSCA). For example, Table 3.3 gives a simple pattern

of clustering alternatives when K = 3 and K = 4 groups or samples, and we wish to cluster
them into k = 1,2,3 and k = 1,2,3, and 4 homogeneous groups, respectively.

Looking at Table 3.3 for K = 4 groups or samples, we see that, in aiternative one,
the group or sample 1,2,3, and 4 are all clustered together. In terms of a hypothesis on
means, this corresponds to Bi = Uy T M3 = gy ,all being equal. Hence,
indicating that group 1,2,3, and 4 are all homogeneous or identical. On the other hand, ir

oS

alternative fifteen, the group or sample 1,2,3, and 4 are clustered as singletons. In terms
of hypothesis on means, this corresponds to Uy, My, Ug, and My all being different,
and therefore, we have 4-sample clusters. Hence, indicating that groups 1,2,3, and 4 are
all heterogeneous. In a similar fashion, we interpret the other clustering alternatives

continuing down the line of Table 3.3.
In concluding this section, we see that in generai the total number of ways of

clustering K groups or samples into k homogeneous groups or sampics is given by equation
(3.3), and the total number of possible clustering alternatives is given by the expression
{3.4). Furthermore, the listings of the necessary combinatorial subroutines are presented in
the Appendix.

Having discussed how to determine the number of ciustering alternatives, we might
ask more questions as follows which need to be answered.

(i) How do we identify the best fitting or approximating modei?
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(ii) Which clustering aiternative do we choose?

(iii) Is it fair to compare different models at the same risk level?

{ivy Should we assume common or varying variance-covariance matrices in
clustering samples?

{v) How do we interpret the resuits?, and so on.

3.3 Splitting Algorithm for Multi-Sample Cluster Analysis (MSCA)

When the cardinality of samples to be clustered is more than K = 10 groups or '
samples, to save computer time and cost of computation, we use the following Splitting
Algorithm to search for an optimal clustering alternative for k = 1,2,...,10, groups or

samples, stage-wise.

STAGE-1 : Start with k = 1-Sample Cluster, that is, when ail the groups or sampies are
all together in their own ciuster, and compute the AIC and SC. ]

STAGE-2 : K-Samples in the root node is split into k = 2-Sample Clusters by using the 1
Stirling Number of the Second Kind (STIRN2) subroutine. The AIC's and SC's i
are computed for all the clustering aiternatives and the best clustering

alternative is chosen by the minimum value of AIC or SC to be split next. \

is now split into k = 3-Sample Clusters by STIRN2, and the AIC's and SC's
are computed to choose the best k = 3-Sample Clusters.

STAGE-3 : The best clustering alternative in STAGE-2 based on the value of the criteria !

STAGE-4 : The process in STAGE-3 is repeated until all the groups are clustered in their

own singieton clusters.

. — et - ®_.

In this manner, the Splitting Algorithm moves from one optimal stage to the next
instead of generating all possible clustering alternatives at once, and then searching for the
best clustering aiternative as k (number of clusters of samples) varies. This requires

B S T ¥ ¥ ¥ -
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enormous storage space on the computer and it is very prohibitive, but nevertheiess, is not {
impossible to do. Our approach is very effective in the sense that it is more advantageous
over the Binary Splitting Algorithms used in the literature since one can see and construct j
the stage-wise optimal decision trees as one waiks through the algorithm.

|
[ In the next section, Section 4. we shall present our proposed new approach, nameiy
/
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model-selection criteria such as Akaike's Information Criterion (AIC) and Schwarz's Criterion

(SC) (see also, Akaike 1978), as new procedures for comparisons and identification of groups
three different but

or samples under

AIC-replacements.
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4. MODEL-SELECTION CRITERIA AND MULTIVARIATE MODELS

4.1 Model-Selection Criteria

The "classical” or "conventional” approach to the model seiection problem has its
basic roots in statistical hypothesis testing problems. Hypothesis testing problems are
always based on the assumption that available data are actuaily generated from one type of
model with a known structure, and the goal is to select this model by analyzing the given
data set.

On the contrary, in recent years, the literature has placed more and more emphasis
on model selection criteria or procedures. The necessity of introducing the concept of

model selection or model identification has been recognized and the problem is posed on the

choice of the "best” approximating model among a class of competing modeis by a suitable
model selection criteria given a data set. Model selection criteria are figures of merit for
competing models. That model, which optimizes the criterion, is chosen to be the best
model.

Suppose there are K alternative models Mk' k = 1,2,....K, represented by the densities
fl('lgl), fz(olgz). veer fK(' ng) for the expianation of a random vector 5 and
given n observations, and for the identification, comparison, and the choice of the modeis
My: k € K} with different number of parameters. Akaike, in his pioneering work in a
very important sequence of papers, inciuding Akaike (1973, 1974, 1977, 1981), developed a
model selection criterion for the identification of an optimal and a parsimonious modei in
data anaiysis from a class of models, which takes model compiexity into account. His
approach is based on the Kullback-Liebler Information (KLIC) and the asymptotic properties
of maximum likelihood ratio statistic. The AIC statistic is an estimator of the risk of a

model under the maximum likelihood estimation and it is defined as foliows.

Definition 4.1.1 Let {Mk: k € K} be a set of competing modeis indexed by k = 1,2,...K.

Then, the criterion
AICk) = -ZlogbLig(k)] + 2m(k) 4.1)

which is minimized to choose a model M, over the set of models is called Akaike's
Information Criterion (AIC).

In (4.1), L[o9(k)] is the likelihood function of observations, E(k) is the maximum
likelihood estimat; of the parameter vector 6 under the model My, and m(k) is the
number of independent parameters estimated when M; is the modei. According to AIC,
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inclusion of an additional parameter is appropriate if logeLIO(k)] increases by one unit or

more, i.e., if logeL[a(k)] increases by a factor of e (~ 2.7i8) or more.
Recently, Akaike (1977, 1978) and Schwarz (1978) has developed a new modei-selection

criterion, called BIC, or what we will denote it here by SC, which is defined as foliows.

Definition 4.1.2 Let {Mk: k € K) be a set of competing modeis indexed by k = 1,2,....K.
Then, the criterion
SCk) = -ZlogeL[g(k)] + m(k)logen {4.2)

which is minimized to choose a model Mk over the set of models is cailed Schwarz's
Criterion (SC).

The criterion (4.2) is derived from a first-order approximation to the posterior
probability of M. over a set of models. We note that this is similar to Akaike's Bayesian
Information Criterion (BIC) in terms of its dependence on log,n which was developed by
Akaike (1977, 1978).

According to Schwarz's Criterion (SC), an additional parameter wiil be included only if
it increases logeLlé(k)] by an amount greater than loge(n)/z. that is, if L[g(k)] increases
by a factor of square root of n or more. Since, for n greater than 8, ’mgen excecds 2,
Schwarz’'s Criterion favors lower dimensional models as does Akaike's BIC. For large
sample sizes, AIC and SC differ from one another in the manner in which they adjust the
usual likelihood ratio statistic, taking into account the difference in dimensionality betwecen
the models.

In the literature, there exists other Akaike-type model-selection criteria which can be

generalized and be put into what we call Generalized Information Criterion (GIC) defined by

GIC(k) = -2log, L{O(k) + a(mim(k) + bik), (4.3)

where n is the sample size, loge = In denotes the natural logarithm, L[:(:j(k)] denotes Lhe

maximum of the likelihnood over the parameters, and m(k) is the number of independent

parameters in the k-th model. For a given criterion, aln) is the cost of fitting an

. additional parameter and b(k} is an additional term depending upon the criterion and the

& model k. For example, Kashyap's (1982) Criterion (KC) falls under the expression for GIC
given in (4.3). Kashyap's Criterion (KC) is based on reasoning similar to BIC and SC, but
contains an extra term, and it could be expected to perform better. However, it is not

3
[' conveniently usable in applications, especially in the type of probiems we are looking at in
4
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this paper. In KC, the extra term bik) = loge[detB(k)] where det denotes determinant and
B(k) is the negative of the matrix of second partials of log'e Lig(k)]. evaiuated at the
maximum likelihood estimates. Therefore, for our purposes, it is prohibitively expensive to
compute KC and its extra term. For this reason, we have chosen only to work with AIC
and SC which are sufficient for all practical purposes. Hence, we have chosen not to
introduce Kashyap's Criterion (KC) here.

We next derive the forms of AIC’'s only for three linked but different multivariate
models for the convenience of the readers. For more details on this, we refer the reader
to Bozdogan (1981, 1984), Bozdogan and Sclove (1984). Derivations of SC's follow similariy.

4.2 Multivariate Models and Their AIC's

Throughout this section we shall suppose that we may have independent data matrices
X,, X,5,....Xy, where the rows of _)fg (ngXp) are indcpendent and identicaliy
distributed (i.i.d.) Np(gg.zg), g= 1,2,...K. In terms of the parameters

N DR N

6 =(u g ., Z.39,..,.2g) the models we are going to consider are as
follows: K

(i) 6= (El.gz,...,gx, -Z-I’ZZ""'ZK) [m = kp + kp(p+1)/2 parameters]

s

o

i) 6= (gl.gz.---.gx. 220 2) im = kp + p(p+1)/2 parameters]

(iii) 6 = (wp,otty 2,202 {m = p + p(p+1)/2 parametersi.
In this section we shall derive the forms of AIC for these models. Recall the
definition of AIC in (4.1).
AIC

-2 log,L(8) + 2m
- Zloge (maximized likelihood} + 2m,

where m denotes the number of free parameters within the model.

4.2.1 AIC for the Test of Homogeneity of Covariances Model:
AlIC ((gg.zg)) = AIC (varying u and Z)

ad W h

Consider K normal populations with different mean vectors Mo and different

i = 12,..n, be a random sample of

i i = PN X .,
covariance matrices Zc. g= 12,....K Let Xei g

4
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observations from the g-th population %(Pg-zg)-

Now, we derive the form of Akaike's Information Criterion (AIC)

hypothesis that the covariance matrices of these populations are equal.

function of all the sample observations is given by

K
Llug Z2g:X) = gl-ll Lolug ZgiXe)

or by

K
L=@n™2 1 135 1"%2 x
g=1 8
exp{-1/2 tr l;_', 2;1 a-l/2 tr 152: Z'l (x -q,)()_( - )}
g.l - -8 g’l%—g ~8 ~8 ~gﬁ£§ ’
K ng - _
where n = g§1 ng and a, = i§1 (Xgi~ ) Xgim X -

The log likelihood function is

g 2oiX) = logeL(LNAg._Zg:)s)

K
= ~(np/2) log,(2x) - 1/2 8’21 n, log, 121

~8 -

~.

K K
1 -1z X '
- 1/2 tr 8-21 _}'; A - 1/2 tr g_zl L Zg (x -{.cg)(fg—%) .

The maximum likelihood estimates (MLE's) of U and Zg are

and

Since the K populations are independent, the likelihood of ail the sample observatijons is
simply the product of the separate likelihoods, and so maximizing (4.5) is equivaient to as

maximizing the individual sample likelihoods, separately. This, thus, yieids the MLE's given

in (4.6) and (4.7) above.

Substituting the MLE's into (4.5) and simpiifying, the maximized log likelihood becomes

19

to test the

The likeiihood

(4.3)

4.4)

(4.5)

(4.6).

4.7)
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4.2.2 AIC for the Multivariate Apalysis of Variance (MANOVA) Model:
AIC ((gg,Z)) 2 AIC (varying u and common 3)

z«gg._z_g;;:_u = log, L((gg.gg};y (4.8) i
K -1 .
= - (np/2) log,(2x) - 1/2 gf_l L logelng égi - (np/2}. .,‘
Since
AIC = -2log L(6) + 2m, 4.9) _1
where m = kp + kp(p+1)/2 is the number of parameters, the AIC becomes %
]
AIC((ug.Z ) = AIC (varying u and 3) g
X -1 . -
= np log, (2x) + 8§1n8 logelng ggl + np + 2{kp+kp(p+1)/2]. {4.10) 7
t Since the constants do not affect the resuit of comparison of models, we could ignore _i
*j them and reduce the form of AIC to a much simpler form
1
g AIC (g Z)) = AIC™ (varying u and 3)
: K g
= T n_log tAa_I + 2[kp+kp(p+1)/2], (4.11)
: g=1 & ¢ 78 . .
L 9
- A
[f: where s
2 ng = sampie size of group or sampie g = 1,2,....K,
. la gI = the determinant of sum of squares and cross-products (SSCP) matrix
ﬁ for group or sample g = 1,2,....K,
:7 k = number of groups or samples compared, and
[: = number of variables.
. However, for purposes of comparison we retain the constants and use AIC given by (4.10).
-
F
-
b
‘.
. '.

Consider in this case, K normai populations with different mean vectors Ugr 8 =

1,2,....K, but each population is assumed to have the same covariance matrix . Let

e xgi' g=12..K;, i = 1,2,...,ng, be a random sample of observations from the g-th
. population Np(ug.Z).

¥C To derive Akaike's Information Criterion (AIC) in this case, we use the log iikeiihood
R
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function given in (4.5). Since each popuiation is assumed to have the same covariance

matrix %, the log likelihood function becomes

2(u ) Z:X) = logL((gg).Z;)_() (4.12)

K

= - (np/2)log(2x) - (n/2iog1 L | - 1/2tr T71 Z %

K
- 1/2te5 "1 § ng(R o~ Wz - w)'

and the maximum-likelihood estimates (MLE's) of Y and X are

ue = fg. g = 12,..K, {4.13)
and .

S=nly, (4.14)
where g

W= )

W go1 ‘e

Substituting these back "into (4.12) and simplifying, the maximized log likelihood

becomes

2({118)2 X) = log L({u }Z X) {4.15)

= - (np/2)iog(2x) - (n/2)login~1 Wi - (np/2),
where W is the "within-groups™ SSP matrix.
Since

AIC = -2log L(8) + 2m, (4.16)

where m = kp + p(p+1)/2 is the number of parameters, then AIC becomes

21
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AIC((gg,g}) = AIC (varying ¢ and common 2) 4.17)
= np log,(2n) + nlogeln']\jl + np + 2(kp + u%"i? i

Since the constants do not affect the result of comparison of models, we could ignore
them and reduce the form of AIC to a much simpler form

AIC (u.Z)) = AIC™ (varying 4 and common 3) (4.18)

= nlog IWl + 2(kp + u%w I,

where K
n= 2 n_ = the total sample size,
g=1 8
IWl = the determinant of "within-groups” SSP matrix,
k = number of groups or samples compared,
p = number of variables.

However, for purposes of comparison we retain the constants and use AIC given by (4.17).

4.3.3 AIC for the Test of Complete Homogeneity Modei:

' AIC ({u,Z)) = AIC (common u and 3) :
]
o
1
i Consider again K normal populations with the same mean vecotr u and the same '
:'_'. covariance matrix Z. To derive the form of AIC for the test of complete homogeneity K
L‘ model, we set all gg's equal to u and ail the 23'3 equal to Z in (4.3) in Section .
t 4.2.1, and obtain the log likelihood function which is given by "
C
- 2 = logL (u.Z:X) (4.19) '
: = - (np/2)log2x) - (n/2log! T 1 - 172" (W + B ) :
s K
P i
‘0 . - (n/2)trZ (§ -g)()} :u)'. !
|
- k
d The MLE's of u and 2 are :
L '
F 0= X, (4.20) ‘
) HTS (
. N
o K
b, N
3 !
3 22 '.“
|- ]
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and
Z2=1/n(W + B)=T/n. 4.21)

Substituting these back into (4.19), we have the maximized log likelihood

21.3)

logLis.:X) (4.22)

- (np/2)log(2x) - (n/2login~1 Ti - (np/2).

Thus, using the equation of AIC in (4.9) again, where m = p + p(p+1)/2 is the number

of parameters this time, the AIC becomes

AIC({u,2)) = AIC (common u and 2) (4.23)

= np log, 2x) + nlogeln'lgl +np + 2[p + M.Eiil_l].

After ignoring the constants, AIC takes the simplified form

AIC™((,E)) = AIC (common y and 3) (4.24) i

= nlog, ITI + 2[p + 2122*—1)'].

where IT! = the determinant of the "total” SSP matrix. However, for purposes of

comparison we retain the constants and use AIC given in (4.23).

b -

v 4.3 AIC-Replacements for Multi-Sample Conventional Tests of Homogeneity Modeis

W,

E:'_ In Section 4.2, having derived the exact anailytical forms of Akaike's Information

N Criterion (AIC) for each of the multivariate modeis, in this seciion, we shall give the

- AIC-replacements for the multivariate muiti-sample conventional tests of homogeneity models

{» and establish the relationship of AIC-repiacements with that of the conventional procedures.

" For more details on this, we shall refer the reader to Bozdogan (1984).

. We next state the following very important theorem which we shall utilize in

\ establishing the relationships of the AIC-replacements and the conventional procedures.
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Theorem 4.3.1 If 01 is a parameter space in RK, and if 00 is a k-dimensional subspace

of 0. then under suitable regularity conditions, for each g € 0 ., -2log\ has an
asymptotic xlz(_k distribution as n -+ o,

Proof. See, for example, Wilks (1932), and Silvey (1970, p. 113).
We are now in a position to give the AIC-replacements for the multivariate
multi-sample conventional tests of homogeneity models.

4.3.1 AIC-Replacement for Box's M for Testing Homogeneity of Covariances

As an aiternative to Box's M test for testing the equality of covariance matrices for
which extensive tables are not readily availabie, we may summarize the coundition for

rejecting

H, ;=% =..=3. (4.25)

against

Hla : Not all K covariance matrices are equal.

as follows:

Relation 4.3.1. We reject H . (test of homogeneity of covariances) if

AIC({gg._);)) > AIC((gg._Zg)). (4.26)
or if
BAICH, ; H ) = AIC“Eng” - AIC({ES.Zg}) >0 4.27)
: -1 X -1
iff nlog in™" WI -g§l nglogelng égl > (k-1)p(p+1) (4.28)
iff -ZIngoa > (k-1)p(p+1), {(4.29)

where AIC({yg,z)) is given in (4.17) and AIC(lug.Zg)) is given is (4.10), and
where -Zlog)ba has an asymptotic chi-squared distribution with 1/2(k-1)p(p+1) degrees of

freedom by Theorem 4.3.1. Using this fact, we establish the following:
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Relation 4.3.2. For comparing pairs of models,

x? ¥ AIC(u 2 - AICHu ) *+ 2l3k-1p(e+1)], (4.30)

2

where x“ is tested as a chi-square with degrees of freedom d.f. = 1/2(k-1)p(p+1).

BN o

4.3.2 AIC-Replacement for Wilks' A Criterion for Testing the Equality of Mean Vectors

As an alternative to Wilks' A Criterion, Bartlett's V statistic, and other conventional

procedures for testing the equality of mean vectors given a common covariance matrix
between the groups or samples, we may summarize the condition for rejecting

Hob H 51 = Ez = .. EK (4.31)

against

Hlb : Not all ug are equal,
as follows:

Relation 4.3.3. We reject H , (one-way multivariate analysis of variance hypothesis) if

AIC(u.Z) > AIC(y,Z) (4.32)
or if

AAICH, ; H) = AIC(u,Z) - AIC(u,Z) > 0 (4.33)
iff nlogyIn™2 T1 -nlogyinlwi > 2p(k-1) (4.34)
iff  -2log),, > 2plk-1), (4.35)

because this test is done under the assumption of a common Z.
AIC({g‘,Z)) is given in (4.17) and AIC(u,Z) is given in (4.23), and where

Y, o=

-Zlog)bb has an asymptotic chi-squared distribution with p(k-1) degrees of freedom by
Theorem 4.3.1. Again, using this fact, we establish the following: K
4
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§
|
2% X




| "B "B "B M Sesl Gt el cad S vl et LB s Sl LS aras AT Arat o ShASIn e d-o et ubun gl AL Sl are T N T T TV WS S N T IR W T oW, W T T e e e

s

‘

<.
L
A

N

Relation 4.3.4. For comparing pairs of models,

x2 = AICUZD) - All(g,.Z) + 2(ptk-1)], (4.36)

2 ig tested as a chi-square wilh degrees of freedom d.f. = plk-1).

where x
o
4.3.3 AIC-Replacement for Testing Complete Homogeneity !

Combining the results in Section 4.3.1 and 4.3.2, we may summarize the condition for

rejecting ‘

9 Hoe: iy =y ==y and I, = 3= .. = F 4.37) )

[ ]

. against §

t—; H1 ¢ Not all mean k vectors and covariance matrices are equai, i
‘ as follows:

Clee o

Relation 4.3.5. We reject Hoc (test of complete homogeneity) if

AIC(u.Z)) > AICHsu 2} (4.38) !
N
and N
3
AIC(u..2) > AICHug.Z.)) , 1
or if
AIC({u,Z) > AlC({ug.2.) (4.39)
since ﬁob = ﬂoc . That is, reject H  if
.
O AAIC(H,, : Hyp) = AICHw,Z) - AICKu  Z) > 0 (4.40)
;:Q iff log, 1n"1T1 - 5 n_ log,In2tA 1 > plp+3k-1) (4.41)
[ i nlog, In™" T iy ng log,in, "Ag plp - .
. iff  -2logl,, > plp+3k-1), (4.42)
X
¢
. where AIC({gg,zg)) is given in (4.10), AIC((ug.Z}) is given in (4.17), and
F': AICHu.Z)) is given in (4.23). '.
o We note that -2logh,, has an asymptotic chi-squared distribution with 1/2p((p+3)(k~1) J
;! degrees of freedom by Theorem 4.3.1. Thus, we now establish our final relation as follows: %
:
s 1
. 1
8 26 !
’.A, i
p |
¢
3 !
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Relation 4.3.6. For comparing pairs of models,

where x

2

x? = AICUu.Z) - AIC(ug Z N + 2i5p(o+3Nic-1)L

z,

is tested as a chi-square with degrees of freedom d.f = 1/2p({p+3)(k-1).

4.43)
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5. NUMERICAL EXAMPLES ]
y

In this section we shall give two different numerical examples and study Muiti-Sample
Cluster Analysis (MSCA) as an alternative to Multiple Comparison Procedures (MCP's). In |
Section 5.1, we shall study tests of homogeneity from modei-selection viewpoint for the

varieties of rice data set given in Srivastava and Carter (1983, p.100), where the detailed
conventional analysis of this data set is discussed and treated. In Section 5.2, we shall
show the application of MSCA in designing optimal decision tree classifiers which are
popular in remote sensing technology.

5.1 Muiti-Sample Clustering of Varieties of Rice

Suppose four varietics of rice (see, e.g., Srivastava and Carter, 1983), namely variety
A, B, C, and D are sown in 20 plots, where each variety of rice is assigned at random to
five plots. Two variables were measured six weeks after transplanting: X, the height of
the plant, and Xy, the number of tillers per plant. Thus for this data set we have p = 2
characteristics, ng = 5 g=1234, and n = an = 20.

We next study tests of homogeneity for this data set by using our procedure, show
step-by-step analysis and compare our results with that of the conventional tests.

(i) Identification of the Best Fitting Parametric Model:

We present the summary of the AIC-values under the thrce parametric multivariate
normal models as follows:

AIC((gg._Z_g}) = AIC( varying u and X ) = 186.324 (5.1)
AIC((gg.E)) = AIC( varying u and common I ) = 178.290 (5.2)
AIC((u,2)) = AIC( common u and X ) = 185.440 (5.3)

The minimum AIC occurs under the MANOVA model in (5.2). Therefore, according to
the definition of AIC, the MANOVA model is the best fitting model for the analysis of the

varieties of rice data set. In other words, we are accepting the equality of covariance ]
matrices for this data set. In fact, if we perform a conventional multivariate test for the é
homogeneity of covariance matrices, we obtain Box's M = 7.97272 or xg = 6.173 with ]
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P-value = .722 (approximately). Hence, the acceptance of the test of homogeneity of
covariance matrices clears the way for a test on the homogeneity of the variety mean
vectors which is the MANOVA null hypothesis. As we saw above, the minimum AIC
procedure already picked the MANOVA model as the best fitting model for this data set.

(ii} Test of Homogeneity of Mean Vectors:

Having determined the best fitting model, that is, the MANOVA model, we now test
the null hypothesis:

Hob * #a) = 4B) = %) = 4D)
against the alternative hypothesis which negates H ;. Using Relation 4.3.3, since
AIC({u,2)) = 185.440 > AIC({gg.Z)) = 178.290, (5.4)
we reject H ., and claim that there is a difference in varieties.

(iii) Multiple Comparisons Under the Best Fitting Modei:

Now we need to compare four varieties of rice simultaneously under the best fitting
model, that is, under {gg,g), in terms of the parameters. For this we proceed to use
AIC((gg,Z)) to compare the four varieties of rice pairwise. Our results are presented
in Table 5.1.

Looking at Table 5.1, we see that, using all the variables simultaneously, the first
minimum AIC occurs at the alternative submodel 2 where we have (A,C) as one
homogeneous pair. Second best homogeneous pair is (B,D). We never choose the pair
(A,B), that is, submodel 1, since its AIC vaiue is quite large indicating the inferiority of
this submodel, or indicating that there is a difference between varieties A and B, and that
they should not be put together as one homogeneous group.

Although the pairwise comparison is the most commonly used Multiple Comparison
Procedure (MCP) in the literature, it is not general, and informative. It only considers the
variabilities in pairs of groups or samples, and it ignores the variabilities in other groups.
Therefore, for this reason, we shall next propose our new methodoiogy, that is,
Multi-Sample Cluster Analysis (MSCA), as an alternative to Muitiple Comparison Procedures
(MCP's).

29

........................
.......

o T

. e
S e . B I - . < . bR ., .« . - c . - s \’..'~'_.‘
2 x Al B & el s s s DRNEIR. TORE, Wy i WA Sy VDT V. W WOEIE T Sy . SR, VAT W T G TR W SAAT WA N YR N TR, S RN WON T S S WAy B | et

et el el el J
v e T




o

LT

oy

v vy

Ty www
.

T TV T s v arL oY

T T T T N T T T T Ty Ty e re oy ey e o rrse

{iv) Muiti-Sample Cluster Analysis (MSCA) of Varieties:

We now cluster K = 4 samples (varieties of rice} into k = 1,2,3, and 4-Sample
Clusters on the basis of all the variables, where p = 2 in this case. We obtain in totai
fifteen possible clustering alternatives by using STIRN2 subroutine in Appendix A.2. Using
a newly developed statistical computer software by this author called AICPARM: A General
Purpose Program for Computing AIC's and SC's for Univariate and Muitivariate Normal
Parametric Models, and using the MANOVA model as our best fitting model, we obtained
the results given in Table 5.2.

Looking at Table 5.2, we see that, the minimum AIC and SC clustering occurs at
alternative submodel 7, that is, k = 2-Sample Clusters is {1,3) (2,4) = (A,C) (B,D), indicating
that there seems to be two types of varieties of rice rather than four varieties. The
second minimum AIC and SC occur at the alternative submodel 13 and at k = 3-Sample
Clusters where we have (1,3) (2) (4) = (A,C) (B) (D) as our clustering, telling us that if we
were to cluster any one of the two varieties of rice, we should cluster varieties A and C
together as one homogeneous group, and we should cluster varieties B and D completely
separately. = We note that the larger values of AIC and SC are indications of the
inferiority of the submodels. Furthermore, we can see the effect of clustering each variety
by looking at the differences of AIC's and SC's across each clustering alternative.
According to AIC and SC, the most inferior submodel is 8 where we have
{1,2) (3,4) = (A,B) (C,D) as our clustering.

In comparing our results in Table 5.1 and 5.2, we see that Multi-Sample Cluster
Analysis (MSCA) is much more general and informative than the pairwise Muitiple

Comparison Procedures (MCP's) to be used for simuitaneous comparative inference.

(v)  Determining the Variables Contributing Most to the Diffcrences in Varieties:

Since there is heterogeneity in the mean vectors (or locations) of the four varieties
of rice, we further proceed on the basis of univariate theory to study the behaviour of the
variety data on each of the p = 2 variables. Our resuits are given in Table 5.3.

Interpreting the results in Table 5.3, we note that X = number of tiilers per piant

shows significant homogeneity across four variet.cs of rice, and in fact, is the best variable
according to the minimum AIC vaiue. The !¢ variable, that is, X, = height of plant, on
the basis of the AIC value indicates tha - «re is a difference in heights between the
varieties. The general conclusion is that there exists more heterogeneily in means on

variable X than X, across the four types of varieties of rice.
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5.2 Application of Multi-Sample Cluster Analysis in Designing Decision Trees in Remote

Sensing

In remote sensing technology, the decision tree ciassifier has been widely used in
various problems in geoscience and remote sensing, speech analysis, biomedical applications,
etc., and in many other areas. For more on this, we refer the reader to Argentiero et al.
(1982), Kulkarni and Kanal (1976), Mui and Fu (1980), Wang and Suen (1984), and others.

Using a decision tree classifier over a single stage classifier, we have an advantage
in the sense that, a complex global decision can be made via a series of simple and local
decisions. This enables us to use a decision tree classifier in two main types of
applications:

(i) recognition of pattern ciasses, and

(ii) tree classifier can make a decision much more quickiy compared to single stage

classifier.

For example, in remote sensing problems one is faced with an image (or scene) which
is a rectangular array with I[-rows (scan lines), and J-columns {the number of resolution
elements per scan line of one resolution element (an individual). Each cell (individual or

.., 1 =12,...I and j = 1,2,....,J. We denote

pixel) generates a pxXl measurement vector xu

the features by
Xl. Xo oo Xp.
The vector feature is
X = (Xl. Xy 0 X ).

The observed digital image is

where

Xij = Xqij Xaip o0 Xpij)

is the vector of numerical values of the p features at pixed (i,j). For more on this, see
also Sciove (1982),
In order to recognize an image (or scene), we need to perform classification, that is,

grouping of pixels, to check the homogeneity of large dimensional Multispectral Scanner
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(MSS) data sets with a view toward identifying objects, and recognizing the pattern classes,
and so forth. This is the major task of cluster analysis techniques.

After the features are extracted, a decision rule is then applied to assign the
reduced dimensional sampies to availabie classes by merging and subjecting these samples to
a sequence of decision rules before they are assigned to a unique ciass. Such an approach
further reduces the dimensionality of these large dimensionai data sets, and it results in an
optimal decision tree classifier which is computationally efficient, accurate, and flexible.
Argentiero et al. (1982), give an example on how to design an optimal decision tree
classifier by using a conventional statistical procedure, namely the multivariate F-test, and
give the associated table look-up decision tree classifier on a simulated heterogeneous
multivariate data set where both the mean vectors and the covariance matrices among the
five classes are varying. It seems that such an approach is primitive and the decision rule
at each stage depends upon a given significance level a. Also it is not clear how they
controlled the overall error rate in their study. We cannot simply use the usual F-tables in
the presence of covariance heterogeneity without testing the equality of covariance
matrices.

To provide an example of Multi-Sample Cluster Analysis (MSCA) for the classification
of large dimensional data sets arising from the merging of remote sensing data, we
reconstructed the data structure presented in Argentiero et al. (1982) with different sample
sizes. That is, we simulated 100 different p = 4 variate muiltivariate normal samples from
the K = 5 classes using the IMSL procedure GGNSM. The simulated data was based on
the class statistics given in Table 5.4 which were obtained from a Landsat-2 satellite over
a midwestern county. The five classes were consisted of two types of winter wheat and
three confusion crops, or non-wheat crops. The four channels, that is, p = 4, are those of
the Muitispectral Scanner on board of the Landsat-2. The number of observations in each
class are as follows: ny =50, ny =75, ng =100, ny = 125, and ng = 150 in total of
n = an = 500 observations. A priori class probabilities are assumed to be equal.

We note that the correct parametric model for the simulated data is varying mean
vectors and the varying covariance matrices which was checked by our procedure.

Each of the 100 different samples of multivariate data were then analyzed using the
AICPARM program of Bozdogan (1983). The results of one such sampie is given in Table
5.5 for clustering K = 5 simulated class types of different groups into k = 1,2,3,4, and
5-Sample Clusters on all variables and the corresponding AIC's and SC's are shown for each
of the clustering alternatives.

Looking at Table 5.5, we see that for this particular sample AIC picks k = 5 as
being the correct number of classes (submodel 52), and then among the k = 4-Sample
Clusters it picks alternative submodel 47; among the k = 3-Sample Clusters it picks
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submodel 25; and finally among the k = 2-Sample Clusters it picks submodel 2 as the best
clustering alternative, respectively in a hierarchical fashion. According to AIC, we never
cluster the five class types as one homogeneous group (submodel 1).

Looking at the same results for SC's we see that SC incorrectly picks k = 4-Sample
Cluster in submodel 47 as being the correct structure, demonstrating a tendency toward
underfitting the underlying random process.

Among ail the 100 different samples, we also selected the best clustering alternatives
for k = 1,2,3,4, and 5-Sample Clusters on the basis of the minimum AIC and SC procedures.
The following is a list of these best clusters:

k=1 (1,2,3,4,5) 100 times out of 100 samples = 100%
k=2 (1,2,3,4) (5) 75 times out of 100 samples = 75%
(1,4,5) (2,3) 25 times out of 100 samples = 25%
k=3 (1.4) (2,3) (5) 100 times out of 100 samples = 100%
k=4 (1) (4) (2,3) (5) 100 times out of 100 samples = 100%
k=35 (1) (2) (3) (4) (5) 100 times out of 100 samples = 100% .

This result is shown in Figure 5.1 in terms of a decision tree which is the structure
of our optimal decision tree classifier. The suboptimal decision tree classifier is shown in
Figure 5.2, and the tree which was picked incorrectly by SC is shown in Figure 5.3.

Thus, in general, if we already know a priori what k should be, AIC and SC agree
over all the samples on which clustering is optimal. In our cxperiment, AIC always chose
the optimal value of k as five, the correct number of underlying heterogeneous normai
populations from which each of the samples were t ~en. However, SC only picks 5
populations 99% of the time. It incorrectly picks k = 4 in one of the samples the resuits of
which are given in Table 5.4 as we discussed above.
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6. CONCLUSIONS

The resuits of the above method clearly iilustrate the flexibility of the minimum AIC
and SC procedures over the classical hypothesis testing. We see that AIC and SC can
indeed identify the best clustering aiternatives when we cluster samples into homogeneous
sets of samples under the best fitting model. We can detect the source of heterogeneity
without any lengthly calculations or subjectivity, and we can measure the amount of
homogeneity and heterogeneity in clustering samples. With this new approach it is now
possible to determine a priori whether we should use equal or varying covariance matrices in
the analysis of a data set. We can reduce the dimensionality of data sets as shown on the
variety of rice data set, and we do not need to assume any arbitrary level of significance a
and table look-up.

The model selection by AIC and SC is also more satisfying since all the possible
clustering alternatives are considered. »

Thus, from the resuits presented in this paper, we see that both AIC and SC unify
the conventional test procedures and avoid the existing ambiguities inherent in these
procedures. They avoid any restriction on K, the number of classes or groups, and p, the
number of variables. The use of AIC and SC show how to combine the information in the
likelihood with an appropriate function of the parameters to obtain estimates of the
3 information provided by competing alternative models. Therefore, the definition of AIC and
._: SC give clear formulation of the principle of parsimony in statistical model building or
comparison as we demonstrated by numerical examples.

? In concludiﬁg, the new approach presented in this paper wiil provide the researcher
3 with a concise, efficient, and a more refined way of studying simultaneous comparative
inference for a particular multi-sample data set. The ability of AIC and SC to allow the

researcher to extract global information from the resuits of fitting several models is a

unique characteristic that is not shared by the conventional procedures nor is it realized by
conventional significance tests.

Therefore, for these reasons the use of model-seiection criteria is recommended in
conjunction with Multi-Sample Cluster Anaiysis (MSCA) as an alternative to Multiple
Comparison Procedures (MCP's).
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APPENDIX : COMBINATORIAL SUBROUTINES

Here we give a listing of major combinatoriai subroutines which we impiemented in a
newly developed statistical computer software by this author cailed AICPARM: A General
Purpose Program for Computing AIC's for Univariate and Muitivariate Normal Parametric
Models. For a lucid discussion and details on combinatorial algorithms, we refer the reader
to Nijenhuis and Wilf (1978).

A.1 MCP: Combination of K samples Taken k at a Time for MCP's in Lexicographic Order

This subroutine generates and lists different combinations of K groups or samples
taken k at a time sequentially. There are [5] k-subsets of a K-set altogether, and MCP
is a simple algorithm which constructs the all possibie alternatives in "lexicographic”, that
is, in "alphabetical order”. A listing of the output from this program is shown in Table
3.1

PROGRAM MCP

PROGRAM MCP
INTEGER A(100),N,K,H,M2
LOGICAL MTC
MTC = .FALSE.
PRINT *,'K CHOOOSE k'
PRINT *,’'WHAT IS K?
READ *N
PRINT *'WHAT IS k?
READ *K

10 CONTINUE
CALL NEXKSB(N,K,A.MTC,H,M2)
PRINT 2, (A(I),I=1,K)

2 FORMAT(30(1X,11))
IF(MTC) GOTO 10
END

I




SUBROUTINE NEXKSB(N,K,A,MTC)

INTEGER A(K)
LOGICAL MTC ‘
INTEGER H,M2 ‘
SAVE H,M2

30 IF(MTC) GOTO 40

20 M2=0 |
H=K ‘
GOTO 50

40 IF(M2.LT.N-H) H=0
H=H+1
M2=A(K+1-H)

50 DO 51 J=LH

51 A(K+J-H)=M2+J
MTC=A(1).NE.N-K+1
RETURN
END

, 37




A.2 STIRN2: Stirling Number of the Second Kind

This subroutine constructs a table of the total number of clustering alternatives for
various values of K, number of samples, and k varying number of clusters of sampies. A
listing of the output from this program is shown in Table 3.2.

PROGRAM STIRN2 K

PROGRAM STIRN2
REAL $(20,20),T
INTEGER N,K

$(1,2)=0.
DO 5 [=1,20
S(L,1)=1.
5 CONTINUE

‘.Jn.‘.‘. Lo

PRINT 30,"TOTAL',(I,I=1,20)
30 FORMAT(13X,A,6(I14,1X),3(:/T19,6(I114,1X)) )
40 FORMAT(12,1X,7(114,1X),3(:/T19,6(114,1X)) )

Y. JCRERR

At

. )RR

PRINT 40,1,1,1
DO 20 N=2,20
T=1.

DO 10 K=2,N
S(N,K)=K*S(N-1,K)+S(N-1,K-1)
=T+S(N,K) é
10 CONTINUE )
PRINT 40,N,T.(S(N,I),1=1,N)

20 CONTINUE

A

L-t C
’ C
END




A.3 REPFM: Representation Forms of Clustering Alternatives

Clustering alternatives can be classified according to their representation forms to
make it easy to list all possible clustering aiternatives. The subroutine REPFM gives the
partition of K (number of samples) which is a positive integer, into a specified k number of
parts. For example, the representation forms of K=6 sampies into k=3 parts are:

6 = {4) + {1} + {1)

{3) + {2} + {1}

{2} + {2} + (2} .

PROGRAM REPFM

PROGRAM REPFM
INTEGER N,D,[K
INTEGER R(100),M(100)
LOGICAL MTC,FIRST
EXTERNAL NEXPAR
MTC = .TRUE.
FIRST = .TRUE.
PRINT *,’WHAT IS N?”
READ *N

10 CONTINUE
IF(MTC) CALL NEXPARIN,R,M,D,MTC,FIRST)

O PRINT 2.(R(I),K=1,M(D)),I=1,D)

. 2 FORMAT (30(1X.11))

- [F(MTC) GOTO 10

[ STOP

f END

{' SUBROUTINE NEXPAR(N,R.M.D.MTC,FIRST)

INTEGER N,M,R,S8,D,SUM,F
LOGICAL MTC,FIRST
DIMENSION R({N),M(N)

¢ INTRINSIC MOD

SAVE
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30

50

40

20

60

70

e
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[F(NOT.FIRST) GOTO 20

FIRST = .FALSE.

S=N

D=0

D=D+1

R(D)=8

M(D)=1
MTC=M(D).NE.N
RETURN
IF(NOT.MTC) GOTO 30
SUM=1

IF(R(D).GT.1) GOTO 60
SUM=M(D)+1

D=D-1

F=R(D)-1
IF(M(D).EQ.1) GOTO 70
M(D)=M(D)-1

D=D+1

R(D)=F

M(D)=1+SUM/F
8=MOD(SUM,F)

IF(S) 40,40,50

END

40

7 J
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A.4 ALLSUB: All Possible Partitioning of K-Samples into k-Sample Clusters

This subroutine generates and lists all the simpie patterns of clustering alternatives
for a specified number of sampies K for Multi-Sample Cluster Analysis. A listing of the
output from this program is shown in Table 3.3.

PROGRAM ALLSUB

PROGRAM ALLSUB
INTEGER N,NC

INTEGER P(100),Q(100)
o CHARACTER*80 LIST
¥ EXTERNAL NEXEQU |
. LOGICAL MTC . !
.4 PRINT *'HOW MANY GROUPS?’ ‘
- READ *N
5 MTC = .FALSE.
. 10 CALL NEXEQU(N,NC,P,QMTC) !
% CALL NEXLST(N,P,Q,NC) |
- IFIMTC) GOTO 10 %
¥ END
; SUBROUTINE NEXEQU(N,NC,P,Q,MTC)

INTEGER N,NC

INTEGER P(N),Q(N)
LOGICAL MTC
SAVE
IF(MTC) GOTO 20
10 NC=1
DO 11 I=1,N
11 Q=1
P(1)=N
60 MTC=NC.NE.N
RETURN
20 M=N
30 L=Q(M)
IF(P(L).NE.1) GOTO 40
QM)=1
M=M-1
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Table 3.1 A Simple Pattern of Clustering Alternatives of Multipie Comparison
for Different Combinations of K Samples Taken k at a Time

I

Combinations Alternatives Clustering ;
2-Subsets 3-Subsets 4-Subsets .
1 (1,2) ]
[g] 2 (1,3) :
3 2.3) i
1 (1,2) (1,2,3) p
2 (1,3) (1,2,4) a
[z.] : [4] 3 (1,4) (1.3.4) :
2 3 -
4 (2,3) (2,3,4) 1
5 (2,4) "
6 (3.4)

1 1,2) (1,2,3) (1,2,3,4)

2 (1,3) (1,2,4) (1,2,3,5)

3 (1,4) (1,2,5) (1,2,4,5)

[;] : [3] , [2] 4 (1,5) (1,34  (1,3,4,5)
5 (2,3) (1,3,5) (2,3,4,5) ;
6 2,4) (1,4,5) ]
7 2.5) (2,3,4) ]
8 (3,4) {2,3,5) 4
9 (3,5) (2,4,5) 9
10 (4,5) (3,4,5) ,
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[ 1
Table 3.2 Number of Clustering Alternatives s Values of K and k J
g .
o 1 2 3 4 5 6 7 8 © 10 Totai
- K
ﬁ 1 |1 1
. 2 |1 1 2
; 3 |1 3 1 5
g 4 |1 7 6 1 15
.;‘. 5 |1 15 25 10 1 52
b -
p 6 |1 31 90 65 15 1 203
ﬁ-u
5 7 |1 63 301 350 140 21 1 877
8 |1 127 966 1701 1050 266 28 1 4140
9 |1 255 3025 7770 6951 2646 462 36 1 21147 :
10 |1 511 9330 34105 42525 22827 5880 750 45 1 115975 E]
5
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o Tabie 3.3 A Simpie Pattern of Clustering Alternatives of Multi-Sample Cluster
Analysis of K Sampies into k Varying Number of Clusters of Samples

No. of Clustering Alternatives Clustering k
Aiternatives
1 {1,2,3) 1 #
K=3 2 (1,.2) (3) 2 ‘
k}::l 5(3.k)=5 3 (1,3) 2) 2 ]
4 (2,3) (1) 2 1
5 (1) 2) 3) 3
1 (1,2,3,4) 1
2 2,3.4) (1) 2
3 {1,3.4) (2) 2
4 (1,2,4) (3) 2
5 (1,2,3) (4) 2
K4 6 (1.4) (2,3) 2
k§1 S(4.k)}=15 7 {1,3) (2,4) 2
8 (1,2) 3,49 2
9 (3,4) (1) 2) 3
10 (2,4} (1) (3) 3
11 {2,3) (1) (4) 3
12 (1,4) (2} () 3
13 (1,3) (2) (4) 3
K 14 (1,2} (3) 4) 3
[. --------- 4 === - === - - -~ - -~ - ===
[ 15 (1) (2 3) @ 4
b
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Table 5.1 Pairwise Comparisons of Four Varieties of Rice on All Variables
Under the MANOVA Modei

Alternative Varieties k 2m AIC({u ,2))

=
1 (A,B) 1 10 164.322"
2 (A,C) 1 10 139.0462
3 (A,D) 1 10 153.147
4 (B,C) 1 10 153.705
5 (B.D) 1 10 145.015P
6 (C.D) 1 10 146.396

NOTE: n = 10 observations ; p = 2 variables; m = kp + p(p+1)/2 parameters
1

AIC({u .Z)) = nplog,(2x) + niog in™" Wi + np + 2m.
g

2 First minimum AIC; i.e., best homogeneous pair
b Second minimum AIC; i.e., second best homogeneous pair
;
Indicates that there is a difference between varieties A and B.
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il-' Table 5.2 Multi-Sampie Cluster Analysis of K = 4 Varieties of Rice into
F] k = 1,2,3, and 4-Sampie Clusters,
9 The AIC's and SC's on All Variabies
b
Alternative Clustering k m AIC({u ,Z)) SC({{u .2}
L" ~g ~g
P 1 (1,.2,3,4) 1 5 185.440125* 190.418762*
’ 2 (2,3,4) (1) 2 7 180.937897* 187.907990
3 (1,3,4) (2) 2 7 183.446991 190.417084
:‘ 4 (1,2,4) (3) 2 7 187.684692 194.654785 .
5 5 (1,2,3) (4) 2 7 183.596893 190.566986 1
b 6 (1,4) (2,3 2 7 185.540253 192.510345 g
F 7 (1,3) (2.4) 2 7 175.777649* 182.747742*
| 8 (1,2) (3.4) 2 7 188.730988 195.701080 3
( _ )
S BN St Rl it Rt g
- 9 (3,4) (1) (2) 3 9 181.179932 190.141510 B
N 10 (2,4) (1) (3) 3 9 177.366486 186.328064 -
N 11 (2,3) (1) (4) 3 9 180.485565 189.447144 k
‘. 12 (1.4) (2) (3) 3 9 185.593323 194.554901 >
R
& 13 (1,3) (2) (4) 3 9 176.836731% 185.798309" B
O -
tf\ 14 (1,2) (3) (4) 3 9 187.137421 196.098999 1
S o R
- 15 (1) (2) (3) (4) 4 11 178.289734* 189.242767* 1
f *1
' ]
L.' A'
o NOTE: A=1B=2C=3 andD=4 n =20 observations -
t' = 2 variables; m = kp + p(p+1)/2 parameters; j
¢ X
1 AIC((yg,Z)) = nplog,(2x) + nlogeln'1 Wil +np + 2m R
r SC{ut_.2)) = nplog_(2x) + niog in~1 Wi + np + miog_(n)
L ot e e e B
( . 1
b Minimum AIC's and SC's for k = 1,2,3 and 4-sampie ciusters, respectiveiy. o
3 R
b B
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Table 5.3 Univariate AIC's on p = 2 Variables for Four Varieties of Rice

Variabies AIC((ug. 02})

1. Height of Plant 111.70°

2. Number of Tiilers Per Plant 65.94

n

NOTE: AIC({ug,orz}) = niog,(2x) + nioge[ssw] +n + 2(k+1)

t 3
Indicates that there is a difference in heights between
the varieties.
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Table 5.4 The Class Statistics of Landsat-2

Multispectral Scanner (MSS) Signatures

Class Type Channel Mean Vector Covariance Matrix 5
p— - . :'
1 27.7 | 127 250 -51.4 -30.8 ;
(1) Non-Wheat 2 24.5 250 63.4 -140.7 -84.2 g
ny=50 3 u =751 5, =|-514 -1407 4155 2421 ,
4 37.4 -30.8 -84.2 242.1 143.4 g
-~ *
1 [34.7] 127 17.2 8.8 0.6 i
(2) Non-Wheat 2 40.4 17.2  30.0 99 -1.2 1
ny,=T75 3 u = 47.0 5, =| 8s 9.9 273 104
4 19.7 L 06 -1.2 10.4 6.0 ]
o - 3
- p— J
1 [33.3 26 26 43 19 C
(3) Non-Wheat 2 38.5 2.6 7.2 2.5 0.3 :
ny=100 3 u, =| 441 Z;=| 43 2.5 41.2 199 N
4 18.7 1.9 0.3 19.9 111 _"
1 28.5 58 74  -60  -4.3) ]
(4) Winter Wheat 2 27.5 74 162 -144 -89 ;
n,=125 3 =| 51.2 =| -60 -14.4 26.7 141 R
4 54 Z4 N
4 24.0 -43 -89 14.1 9.0 .
— mn L —
a 1 (215 7.3 103 41  -10
¢ (5) Winter Wheat 2 16.7 103 18.0 49 -28
;' ns=150 3 S =] 549 5= | 441 4.9 260 11.4
0 4 29.1 -1.0 -2.8 11.4 8.1
L': b - — -
;I
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L Table 5.5 Multi-Sample Cluster Analysis of K = 5 Simulated Class Types of
Different Crops into k = 1,2,3,4, and 5-Sample Clusters,
The AIC's and SC's on All Variables
Alternative Clustering k m AIC“Eg'Z.g}) SC(((gg.gg})
1 (1,2,3,4,5) 1 14 11650.509766* 11709.513672*
2 (1,2,3,4) (5) 2 28 10434.767578* 10552.775391*
3 (1.2,3,5) (4) 2 28 11100.183594 11218.191406
4 (1,2,4,5) (3) 2 28 11102.822266 11220.830078
5 {1,3,4,5) (2) 2 28 11223.681641 11341.689453
6 (1) (2,3,4,5) 2 28 10954.841797 11072.849609
7 (1,2,3) (4,5) 2 28 10753.361328 10871.369141
8 {1,2,4) (3,5) 2 28 11195.396484 11313.404297
9 (1,2,5) (3,4) 2 28 11245.294922 11363.302734
10 (1,3,4) (2,5) 2 28 11121.404297 11239.412109
1n (1,3,5) (2,4) 2 28 11340.630859 11458.638672
12 (1,4,5) (2,3) 2 28 10475.867188 10593.875000
13 (1,5) (2,3,4) 2 28 10612.294922 10730.302734
14 (1,49) (2,3,5) 2 28 10763.261719 10881.269531
15 (1,3) (2,4,5) 2 28 11045.414063 11163.421875
16 (1,2) (3,4,5) 2 28 11122.408203 11240.416016
17 (1) (2,5) (3,4) 3 42 10669.160156 10846.171875
18 (1) 2,4) 3,5) 3 42 10737.947266 10914.958984
19 (1) (2,3) {4,5) 3 42 9931.666016 10108.677734
20 (1,5) (2) (3,4) 3 42 10321.367188 10498.378906
21 (1,5) (2,4) (3) 3 42 10301.919922 10478.931641
22 (1,5) (2,3) (4) 3 42 9684.330078 9861.341797
¥ 22 (1,4) (2) (3,5) 3 42 10377.035156 10554.046875
24 (1,4) (2,5) (3) 3 42 10288.802734 10465.814453
- 25 (1,4) (2,3) (5) 3 42 9378.460938* 9455.472656*
26 (1,.3) (2) (4.5) 3 42 10464.267578 10641.279297
E , 27 (1.3) (2,5) (4) 3 42 10564.726563 10741.738281
g 28 {1,3) (2,4) (5) 3 42 10171.974609 10348.986328
fA 29 (1,2) (4,5} (3) 3 42 10418.652344 10595.664063
30 (1,2) (3,5) (4) 3 42 10607.343750 10784.355469
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(1,2) (3,4) (5)
1,2,3) 4) (5)
(1,2,4) (3) (5)
(1,2,5) 3) 4)
(1,3,4) (2) (5)
(1.3,5) 2) (4)
(1,4,5) (2) 3)
(1) (2,3,4) (5)
(1) (2,3,5) (4)
(1) (2,4,5) (3)
(1) (2) 3,4.5)

(1) (2) (3) 4.,5)
(1) (2) Q3.5 (4)
(1) (2) (3,4) (5)
(1) (2,5) (3) (4)
(1) (2,9) (3) (5)
1) (2,3) (4) (5)
(1,5 2) 3) @)
(1,4) (2) 3) (5)
(1,3) (2) (4) (5)
(1,2) (3) (4) (5)

(1) (2) (3) (4) (5)

42
42
42
42
42
42
42
42
42
42
42

W W W W W W W W W ww

56
56
56
56
56
56
56
56
56
56

L T - - S N S

10145.806641
9788.210938

10041.552734
10552.988281
10055.792969
10667.771484

10420.597656
9894.478516
10451.314453

10457.542969

10580.152344

9876.396484
10065.087891
9603.550781
9976.855469
9584.103516
8966.513672*
9629.060547
9223.191406
9499.115234
9453.501953

8911.246094*

10322.818359
9965.222656
10218.564453
10730.000000
10232.804688
10844.783203
10597.609375
10071.490234
10628.326172
10634.554688
10757.164063
10112.414063
10301.105469
9839.568359
10212.873047
9820.121094
9202.531250*
9865.078125
9459.208984
9735.132813
9689.519531

9206.267578*

NOTE:

n = 500 total number of observations;

m = kp + kp{(p+1)/2 parameters;

Kk
AICHu .2 ) = nplog,(2r) + 21 nglog, ing

SCllug,Z,)

= nploge(Z;r) +

8-

k
X
g=1

ngloge in

g

1

p = 4 variables

A + +
_gl np + 2m

Al + np + miog,(n)

'Minimum AIC's and SC's for k = 1,2,3,4 and 5-sampie ciusters, respectively.
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STAGE 1. (1,2,3,4,5) j'
| , | y
[ l :

STAGE 2: (1,2,3.4) (5)

[

STAGE 3: (1,4) (2,3

F_J_!

STAGE 4: (1) 4)

STAGE 5: ) (3)

Rigure 5.1. OPTIMAL DECISION TREE CLASSIFIER. This tree structure associated with :
the class statistics given in Table 5.4 was picked 75 times in the 100 different samples #
using the minimum AIC procedure, and it was picked 74 times by using the minimum SC 1

procedure.
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STAGE 1: (1,2,3,4,5)

l

I
STAGE 2: (1,4,5) 2,3)
l |
STAGE 3: (1,4) (5)
STAGE 4: (1) (4)
STAGE 5: (2) (3)

Figure 5.2. SUBOPTIMAL DECISION TREE CLASSIFIER. This tree structure associated
with the class statistics given in Table 5.4 was picked 25 times in the 100 different

samples using the minimum AIC and SC procedures.
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STAGE 1: (1,2,3,4,5)

B I
STAGE 2: (1,2,3,4) (5)
g |
b |
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Figure 5.3. WRONG DECISION TREE CLASSIFIER. This is the tree structure which was
1N
picked by the minimum SC procedure wrongfully, that is, SC missed the correct structure.
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